Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0380220070400020232
Journal of Biochemistry and Molecular Biology
2007 Volume.40 No. 2 p.232 ~ p.238
Function and Oligomerization Study of the Leucine Zipper-like Domain in P13 from Leucania separata Multiple Nuclear Polyhedrosis Virus
Du Enqi

Yao Lunguang
Xu Hua
Lu Songya
Qi Yipeng
Abstract
The p13 gene is uniquely present in Group II nucleopolyhedroviruses (NPVs) and some granuloviruses, but not in Group I NPVs. p13 gene was first described by our laboratory in Leucania separatamultiple nuclear polyhedrosis virus (Ls-p13) in 1995. However, the functions of Ls-P13 and of its homologues are unknown. When Ls-p13 was inserted into Autographa californica nucleopolyhedrovirus, a Group I NPV, polyhedra yield was inhibited. However, this inhibition was prevented when the leucine zipper-like domain of Ls-p13 was mutated. To determine the cause of this marked difference between Ls-P13 and leucine zipper mutated Ls-P13 (Ls-P13mL), oligomerization and secondary structure analyses were performed. High performance liquid chromatography and yeast two-hybrid assays indicated that neither Ls-P13 nor Ls-P13mL could form oligomers. Informatics and circular dichroism spectropolarimetry results further indicated marked secondary structural differences between Ls-P13 and Ls-P13mL. The LZLD of Ls-P13 has two extended heptad repeat units which form a hydrophobic surface, but it is short of a third hydrophobic heptad repeat unit for oligomerization. However, the mutated LZLD of Ls-P13mL lacks the above hydrophobic surface, and its secondary structure is markedly different. This difference in its secondary structure may explain why Ls-P13mL is unable to inhibit polyhedra yield.
KEYWORD
Function, Leucine zipper-like domain, Leucania separata multiple nuclear polyhederosis virus, Oligomerization, P13
FullTexts / Linksout information
Listed journal information